Schur's Q-functions and Plethysm Stability

John Graf North Carolina State University

> GSCC 2025 March 15, 2025

Joint work with Naihuan Jing

Table of Contents

- 1 The Ring of Symmetric Functions
 - Definitions
 - Bases of Λ
 - The Subring Γ
- Vertex Operator Identity
 - Pfaffian Formulation
 - Vertex Operator Algebras
 - Combinatorial Interpretation
- Plethysm Stability
 - Plethysm
 - Stability Theorems

Definitions

Symmetric Functions

Definition

A symmetric function is a function in the variables $A = \{a_1, a_2, \ldots\}$ that is invariant under any permutation of the variables.

- Example: $f(a_1, a_2) = a_1^2 a_2 + a_1 a_2^2 = f(a_2, a_1)$
- Non-example: $g(a_1, a_2) = a_1^2 a_2$, but $g(a_2, a_1) = a_1 a_2^2$
- Let $\Lambda_{\mathbb{Q}}$ denote the *ring of symmetric functions* with rational coefficients in the variables $A = \{a_1, a_2, ...\}$
- There are several algebraic generating sets for symmetric functions

$$egin{aligned} \Lambda_{\mathbb{Q}} &= \mathbb{Q}[e_1, e_2, e_3, \ldots] \ &= \mathbb{Q}[h_1, h_2, h_3, \ldots] \ &= \mathbb{Q}[p_1, p_2, p_3, \ldots] \end{aligned}$$

Definitions

Algebraic Generating Sets

Definition

The elementary symmetric function e_n is defined

$$e_n := \sum_{i_1 < i_2 < \cdots < i_n} a_{i_1} a_{i_2} \cdots a_{i_n} \qquad (n \ge 1)$$

The complete (homogeneous) symmetric function h_n is defined

$$h_n := \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} a_{i_1} a_{i_2} \cdots a_{i_n} \qquad (n \geq 1)$$

The power sum symmetric function p_n is defined

$$p_n := \sum_{i>1} a_i^n \qquad (n \ge 1)$$

•
$$e_0 = h_0 = p_0 = 1$$
, $e_1 = h_1 = p_1 = a_1 + a_2 + a_3 + \cdots$

Partitions

The bases are indexed by partitions

Definition

A composition λ is a finite sequence of integers $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$. It is a partition if its parts are non-negative and weakly decreasing,

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0.$$

- $\ell(\lambda) :=$ number of nonzero parts of λ
- The Young Diagram of shape

$$\lambda - \mu = (6, 5, 2) - (3, 1)$$

The Bases

Definition

For a partition λ , define

$$e_{\lambda} := e_{\lambda_1} e_{\lambda_2} e_{\lambda_3} \cdots, \qquad h_{\lambda} := h_{\lambda_1} h_{\lambda_2} h_{\lambda_3} \cdots, \qquad p_{\lambda} := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots.$$

• The sets $\{e_{\lambda}\}$, $\{h_{\lambda}\}$, $\{p_{\lambda}\}$, indexed by partitions λ , are bases of $\Lambda_{\mathbb{Q}}$

Example

Let
$$F = h_5 h_3 h_1 + 3 h_6 h_2 + 5$$
, then $F = h_{(5,3,1)} + 3 h_{(6,2)} + 5 h_{(0)}$

• Also bases: $\{m_{\lambda}\}$ and $\{S_{\lambda}\}$

Bases of A

Schur Functions

Theorem (Jacobi-Trudi Identity)

For a partition $\lambda \in \mathbb{Z}^n$, we have

$$S_{\lambda} = \det (h_{\lambda_i - i + j})_{1 \le i, j \le n}$$

Example

Let $\lambda = (6, 5, 2)$, then

$$\begin{split} S_{(6,5,2)} &= \det \begin{pmatrix} h_{6-1+1} & h_{6-1+2} & h_{6-1+3} \\ h_{5-2+1} & h_{5-2+2} & h_{5-2+3} \\ h_{2-3+1} & h_{2-3+2} & h_{2-3+3} \end{pmatrix} \\ &= \det \begin{pmatrix} h_{6} & h_{7} & h_{8} \\ h_{4} & h_{5} & h_{6} \\ h_{0} & h_{1} & h_{2} \end{pmatrix} \\ &= h_{6}h_{5}h_{2} - h_{6}^{2}h_{1} - h_{7}h_{4}h_{2} + h_{7}h_{6} + h_{8}h_{4}h_{1} - h_{8}h_{5} \end{split}$$

The Functions q_n

Definition (q_n) 's

The functions q_n are defined by the generating function

$$\kappa_{\mathbf{z}} := \prod_{\mathbf{a} \in A} \frac{1 + \mathbf{a}\mathbf{z}}{1 - \mathbf{a}\mathbf{z}} = \sum_{n \in \mathbb{Z}} q_n(A)\mathbf{z}^n.$$

Example (First Few q_n 's)

$$q_1 = 2a_1 + 2a_2 + 2a_3 + \dots = 2p_1$$

$$q_2 = 2a_1^2 + 2a_2^2 + \dots + 2a_1a_2 + 2a_1a_3 + \dots = 2p_1^2$$

$$q_3 = \frac{4}{3}p_1^3 + \frac{2}{3}p_3$$

- ullet We work in the subring $\Gamma_{\mathbb O}:=\mathbb Q[q_1,q_2,q_3,\ldots]\subset \Lambda_{\mathbb O}$
- Note: $\Gamma_{\mathbb{O}} = \mathbb{Q}[q_1, q_3, q_5, \ldots] = \mathbb{Q}[p_1, p_3, p_5, \ldots]$

Schur's Q-functions

Definition (Schur's Q-function Q_{λ})

For $r, s \in \mathbb{Z}$, define

$$Q_{(r,s)} := q_r q_s + 2 \sum_{i=1}^{s} (-1)^i q_{r+i} q_{s-i}.$$

Then, for $\lambda = (\lambda_1, \dots, \lambda_{2n})$, define

$$Q_{\lambda} := \operatorname{Pf} M(\lambda),$$

where

$$M(\lambda)_{ij} := \begin{cases} Q_{(\lambda_i, \lambda_j)}(A) & \text{if } i > j, \\ 0 & \text{if } i = j, \\ -Q_{(\lambda_j, \lambda_i)}(A) & \text{if } i < j, \end{cases}$$

and where det $M = (Pf M)^2$ for a skew-symmetric matrix.

Schur's Q-function Properties

Example (The matrix $M(\lambda 0)$)

Let $\lambda = (5, 2, 1)$. Since $\ell(\lambda)$ is odd, use $\lambda 0 = (5, 2, 1, 0)$. Then

$$\begin{split} Q_{(5,2,1)} &= \mathsf{Pf} \begin{pmatrix} 0 & Q_{(5,2)} & Q_{(5,1)} & Q_{(5,0)} \\ -Q_{(5,2)} & 0 & Q_{(2,1)} & Q_{(2,0)} \\ -Q_{(5,1)} & -Q_{(2,1)} & 0 & Q_{(1,0)} \\ -Q_{(5,0)} & -Q_{(2,0)} & -Q_{(1,0)} & 0 \end{pmatrix} \\ &= Q_{(5,2)}Q_{(1,0)} - Q_{(5,1)}Q_{(2,0)} + Q_{(5,0)}Q_{(2,1)} \\ &= q_1q_2q_5 - 2q_3q_5 - 2q_2q_6 + 2q_1q_7 \end{split}$$

- ullet This extends Q_λ to compositions λ with negative parts
 - For S_{λ} , Jacobi-Trudi works for compositions λ with negative parts
- The $\{Q_{\lambda}\}$, indexed by *strict* partitions, are a basis of $\Gamma_{\mathbb{Q}}$
- ullet Analogous roles/properties to Schur functions \mathcal{S}_{λ}
- ullet Goal: Prove plethysm stability of Q_{λ} using vertex operators

Basic Properties and Question

Properties:

Anti-symmetry:

$$Q_{(r,s)} = -Q_{(s,r)}$$
 $(r + s \neq 0)$

• Non anti-symmetry: $Q_{(0,0)} = 1$, and

$$Q_{(r,-r)} = 0,$$
 $Q_{(-r,r)} = (-1)^r 2$ $(r \ge 1)$

- Appending 0's: $Q_{(r,0)} = Q_{(r)} = q_r$
- $Q_{\lambda} = 0$ if λ is not strict

Question: How do we interpret negative parts?

Negative Parts

•
$$p\lambda := (p, \lambda_1, \ldots, \lambda_n)$$

Proposition (G.-Jing (2025))

Let $p \in \mathbb{Z}$, p > 0, be a positive integer and let $\lambda \in \mathbb{Z}^n$ be a strict partition, then

$$Q_{(-p)\lambda} = egin{cases} (-1)^{p+i+1} 2Q_{\lambda\setminus\{\lambda_i\}} & \textit{if } p = \lambda_i \textit{ for some } i, \\ 0 & \textit{otherwise}. \end{cases}$$

- $Q_{(-4,5,4,2)} = -2Q_{(5,2)}, \qquad Q_{(-4,5,3,2)} = 0$
- ullet $Q_{(-p)\lambda}$ interpretation: negative parts remove rows from the Young diagram
- $S_{(-p)\lambda}$ interpretation: negative parts remove columns

Vertex Operator to Schur's Q-functions

• The vertex operator Y(z) is defined

$$Y(z) := \exp\left(\sum_{\substack{n \ge 1 \\ n \text{ odd}}} \frac{2}{n} p_n z^n\right) \exp\left(-\sum_{\substack{n \ge 1 \\ n \text{ odd}}} \frac{\partial}{\partial p_n} z^{-n}\right)$$

• Its homogeneous components Y_n are defined

$$Y(z) = \sum_{n \in \mathbb{Z}} Y_n z^n$$

• The operator $Y_{\lambda_1}Y_{\lambda_2}\cdots Y_{\lambda_k}$ corresponds to Schur's Q-function $Q_{(\lambda_1,\lambda_2,\ldots,\lambda_k)}$

Vertex Operator Identity - Symmetric Function Statement

• Define an inner product (\cdot, \cdot) on $\Gamma_{\mathbb{Q}}$ such that the Q_{λ} form an orthogonal basis,

$$(Q_{\lambda},Q_{\mu})=2^{\ell(\lambda)}\delta_{\lambda\mu}$$

• Let F^{\perp} denote the adjoint of multiplication by $F \in \Gamma$,

$$(F^{\perp}G,H)=(G,FH)$$

• In our notation, the vertex operator is $\kappa_z \cdot \kappa_{-1/z}^{\perp}$, where

$$\kappa_z = \sum_{n \in \mathbb{Z}} q_n z^n$$
 $\kappa_{-1/z}^{\perp} = \sum_{n \in \mathbb{Z}} (-1/z)^n q_n^{\perp}$

Theorem (G.-Jing (2025))

Let λ be a partition, then we have

$$\kappa_z \cdot \kappa_{-1/z}^{\perp} Q_{\lambda} = \sum_{p \in \mathbb{Z}} Q_{p\lambda} z^p,$$

where
$$p\lambda := (p, \lambda_1, \dots, \lambda_n)$$
.

Plethysm

- Plethysm corresponds to the composition of representations
- Denoted $F \circ G$ or F(G) for $F, G \in \Lambda$
- Power sums: p_m replaces variables with their mth powers

$$p_m \circ G(a_1, a_2, a_3, \ldots) = G(a_1^m, a_2^m, a_3^m, \ldots)$$

• $p_m \circ p_n = p_{mn}, \qquad p_m \circ (F + G) = (p_m \circ F) + (p_m \circ G),$ etc.

Example

$$(p_1 + p_2^2) \circ (2p_3) = p_1 \circ (2p_3) + (p_2 \circ (2p_3))^2$$

= $2(p_1 \circ p_3) + 4(p_2 \circ p_3)^2$
= $2p_3 + 4p_6^2$

• To compute $F \circ G$, write F, G as polynomials in $\mathbb{Q}[p_1, p_2, p_3, \ldots]$

Plethysm Stability Motivation

Example

Let's compute $Q_{(2)} \circ Q_{(p,1)}$ for $p \geq 2$:

$$\begin{split} &Q_{(2)}\circ Q_{(2,1)} = 8Q_{(4,2)} \\ &Q_{(2)}\circ Q_{(3,1)} = 8Q_{(6,2)} + 16Q_{(5,3)} + 8Q_{(5,2,1)} + 8Q_{(4,3,1)} \\ &Q_{(2)}\circ Q_{(4,1)} = 8Q_{(8,2)} + 16Q_{(7,3)} + 8Q_{(7,2,1)} + 16Q_{(6,3,1)} + \cdots \\ &Q_{(2)}\circ Q_{(5,1)} = 8Q_{(10,2)} + 16Q_{(9,3)} + 8Q_{(9,2,1)} + 16Q_{(8,3,1)} + \cdots \\ &Q_{(2)}\circ Q_{(6,1)} = 8Q_{(12,2)} + 16Q_{(11,3)} + 8Q_{(11,2,1)} + 16Q_{(10,3,1)} + \cdots \end{split}$$

The coefficients to $Q_{(s,3,1)}$ stabilize to 16:

The inner product isolates these coefficients:

$$(Q_{(2)} \circ Q_{(p,1)}, Q_{(s,3,1)})$$
 for $p \in \mathbb{Z}, \ 2 \cdot (p+1) = s+3+1$

Plethysm Stability Theorems

Theorem (G.-Jing (+2025))

Let λ, μ, ν be partitions, then the following sequences stabilize:

$$egin{aligned} \left(Q_{\lambda}\circ Q_{p\mu},\,Q_{s
u}
ight) & ext{ for }p\in\mathbb{Z},\,\,s=|\lambda|(|\mu|+p)-|
u|,\ \left(Q_{p\lambda}\circ Q_{\mu},\,Q_{s
u}
ight) & ext{ for }p\in\mathbb{Z},\,\,s=(|\lambda|+p)|\mu|-|
u|,\,\,\ell(\mu)>1. \end{aligned}$$

The following sequence increases linearly for large enough p:

$$(Q_{p\lambda} \circ Q_{(m)}, Q_{s\nu})$$
 for $p \in \mathbb{Z}, \ s = (|\lambda| + p)m - |\nu|$.

Theorem (Carré -Thibon)

Let λ, μ, ν be partitions, then the following sequences stabilize:

$$(S_{\lambda} \circ S_{p\mu}, S_{s\nu}) \qquad \text{for } p \in \mathbb{Z}, \ s = |\lambda|(|\mu| + p) - |\nu|,$$

$$(S_{p\lambda} \circ S_{\mu}, S_{s\nu}) \qquad \text{for } p \in \mathbb{Z}, \ s = (|\lambda| + p)|\mu| - |\nu|.$$

Vertex Operators and Plethysm Stability

How does the vertex operator relate to plethysm stability?
 Write the sequence as a power series:

$$\begin{split} \sum_{p,s\in\mathbb{Z}} \left(Q_{\lambda} \circ Q_{p\mu}, Q_{s\nu} \right) z^s &= \sum_{p\in\mathbb{Z}} \left(Q_{\lambda} \circ Q_{p\mu}, \sum_{s\in\mathbb{Z}} Q_{s\nu} z^s \right) \\ &= \sum_{p\in\mathbb{Z}} \left(Q_{\lambda} \circ Q_{p\mu}, \kappa_z \cdot \kappa_{-1/z}^{\perp} Q_{\nu} \right) \end{split}$$

- Carré and Thibon used vertex operators to show plethysm stability of Schur functions
- Why the difference in stability between Schur and Schur's Q?

$$S_p(S_m(z)) = z^{mp},$$

$$Q_p(Q_m(z)) = 4pz^{mp}.$$

Future Work

• The Hall-Littlewood functions $Q_{\lambda}(A;t)$ generalize S_{λ} and Q_{λ}

$$Q_{\lambda}(A;0) = S_{\lambda}(A)$$
 $Q_{\lambda}(A;-1) = Q_{\lambda}(A)$

• Can we prove plethysm stability for Hall-Littlewood functions?

Thank you!