Symmetric Functions and Plethysm

John Graf

November 2, 2024

Joint work with Naihuan Jing

Table of Contents

- 1 The Ring of Symmetric Functions
 - Definitions
 - Bases of Λ
 - The Subring Γ
- Vertex Operator Identity
 - Pfaffian Formulation
 - The Identity
- Plethysm Stability
 - Plethysm
 - Stability Theorems

Definitions

Definition

A symmetric polynomial is a polynomial in the variables a_1, \ldots, a_n that is invariant under any permutation of the variables.

- Example: $f(a_1, a_2) = a_1^2 a_2 + a_1 a_2^2 = f(a_2, a_1)$
- Non-example: $g(a_1, a_2) = a_1^2 a_2$, but $g(a_2, a_1) = a_1 a_2^2$
- An alphabet $A = \{a_1, a_2, a_3, ...\}$ is a set of variables (finite or infinite)

Definition

A symmetric function is a symmetric polynomial in infinitely-many variables $A = \{a_1, a_2, a_3, \ldots\}$ (more accurately, a it is a formal power series in the variables $A = \{a_1, a_2, a_3, \ldots\}$).

• Example: $f(A) = \sum_{a \in A} a = a_1 + a_2 + a_3 + \cdots$

The Bases

- \bullet $\Lambda_{\mathbb{Q}}$ denotes the ring of symmetric functions with rational coefficients
- A partition $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ is a sequence $\lambda_1 \ge \dots \ge \lambda_n \ge 0$

Definition

The power sum symmetric function p_r $(r \ge 0)$ is defined $p_0 = 1$ and

$$p_r = \sum_{i \geq 1} a_i^r \quad (r \geq 1)$$

$$p_{\lambda}=p_{\lambda_1}p_{\lambda_2}\cdots p_{\lambda_n}.$$

- Example: $p_2(a_1, a_2, a_3) = a_1^2 + a_2^2 + a_3^2$
- Example: $p_{(2,1)}(a_1, a_2, a_3) = p_2 p_1 = (a_1^2 + a_2^2 + a_3^2)(a_1 + a_2 + a_3)$
- $\Lambda_{\mathbb{Q}} = \mathbb{Q}[p_1, p_2, \ldots] = \mathbb{Q}[e_1, e_2, \ldots] = \mathbb{Q}[h_1, h_2, \ldots]$
- $\{p_{\lambda}\}$, $\{e_{\lambda}\}$, $\{h_{\lambda}\}$ are vector space bases of $\Lambda_{\mathbb{Q}}$
- Another basis is the *Schur functions* $\{S_{\lambda}\}$

Bases of A

Schur Functions

Theorem (Jacobi-Trudi Identity)

For a partition $\lambda \in \mathbb{Z}^n$, we have

$$S_{\lambda} = \det (h_{\lambda_i - i + j})_{1 \le i, j \le n}$$

Example

Let $\lambda = (6, 5, 2)$, then

$$\begin{split} S_{(6,5,2)} &= \det \begin{pmatrix} h_{6-1+1} & h_{6-1+2} & h_{6-1+3} \\ h_{5-2+1} & h_{5-2+2} & h_{5-2+3} \\ h_{2-3+1} & h_{2-3+2} & h_{2-3+3} \end{pmatrix} \\ &= \det \begin{pmatrix} h_{6} & h_{7} & h_{8} \\ h_{4} & h_{5} & h_{6} \\ h_{0} & h_{1} & h_{2} \end{pmatrix} \\ &= h_{6}h_{5}h_{2} - h_{6}^{2}h_{1} - h_{7}h_{4}h_{2} + h_{7}h_{6} + h_{8}h_{4}h_{1} - h_{8}h_{5} \end{split}$$

The Functions q_n

An uncommon basis: Schur's Q-functions

Definition

The functions $q_n(A)$ are defined by the generating series

$$\kappa_z(A) := \prod_{a \in A} \frac{1 + az}{1 - az} = \sum_{n \in \mathbb{Z}} q_n(A) z^n.$$

- $q_1 = 2a_1 + 2a_2 + 2a_3 + \cdots = 2p_1$
- $q_2 = 2a_1^2 + 2a_2^2 + \cdots + 2a_1a_2 + 2a_1a_3 + \cdots = 2p_1^2$
- $q_3 = \frac{4}{3}p_1^3 + \frac{2}{3}p_3$

The Subring Γ

- ullet We will work in the subring $\Gamma:=\mathbb{Z}[q_1,q_2,\ldots]$
- Schur's Q-functions Q_{λ} form a vector space basis of Γ , indexed by strict partitions λ

Partition definitions:

- A partition $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ is *strict* if it has no repeated nonzero parts
- Its length $\ell(\lambda)$ is the number of nonzero parts
- Its weight $|\lambda|$ is the sum of its parts.

Operations on partitions:

- Append integer $p \in \mathbb{Z}$ to beginning: $p\lambda := (p, \lambda_1, \dots, \lambda_n)$
- Append 0 to end: $\lambda 0 := (\lambda_1, \dots, \lambda_n, 0)$
- Remove *i*th part: $\lambda \setminus \{\lambda_i\} := (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n)$

Pfaffian Reformulation

Definition ([GJ24a])

For $r, s \in \mathbb{Z}$, define

$$Q_{(r,s)} := q_r q_s + 2 \sum_{i=1}^{s} (-1)^i q_{r+i} q_{s-i}.$$

Then, for $\lambda = (\lambda_1, \dots, \lambda_{2n})$, define

$$Q_{\lambda} := \operatorname{Pf} M(\lambda),$$

where

$$M(\lambda)_{ij} := \begin{cases} Q_{(\lambda_i, \lambda_j)}(A) & \text{if } i > j, \\ 0 & \text{if } i = j, \\ -Q_{(\lambda_i, \lambda_i)}(A) & \text{if } i < j, \end{cases}$$

and where det $M = (Pf M)^2$ for a skew-symmetric matrix $(M^t = -M)$.

Basic Properties

Example

Let $\lambda = (5, 2, 1)$. Since $\ell(\lambda)$ is odd, use $\lambda 0 = (5, 2, 1, 0)$. Then

$$\begin{split} Q_{(5,2,1)} &= \mathsf{Pf} \begin{pmatrix} 0 & Q_{(5,2)} & Q_{(5,1)} & Q_{(5,0)} \\ -Q_{(5,2)} & 0 & Q_{(2,1)} & Q_{(2,0)} \\ -Q_{(5,1)} & -Q_{(2,1)} & 0 & Q_{(1,0)} \\ -Q_{(5,0)} & -Q_{(2,0)} & -Q_{(1,0)} & 0 \end{pmatrix} \\ &= Q_{(5,2)}Q_{(1,0)} - Q_{(5,1)}Q_{(2,0)} + Q_{(5,0)}Q_{(2,1)} \\ &= q_1q_2q_5 - 2q_3q_5 - 2q_2q_6 + 2q_1q_7 \end{split}$$

- Antisymmetry: $Q_{(r,s)} = -Q_{(s,r)}$ for all $r + s \neq 0$
- Non antisymmetry:
 - $Q_{(0,0)} = 1$
 - $Q_{(r,-r)} = 0$, but $Q_{(-r,r)} = (-1)^r 2$ for all $r \ge 1$
- $Q_{\lambda} = 0$ if λ is not strict

Negative Parts

Proposition ([GJ24a])

Let $p \in \mathbb{Z}$, p > 0, be a positive integer and let $\lambda \in \mathbb{Z}^n$ be a strict partition, then

$$Q_{(-p)\lambda} = (-1)^{p+\operatorname{ind}(\lambda,p)+1} 2Q_{\lambda\setminus\{p\}},$$

where

$$\operatorname{ind}(\lambda, p) = \begin{cases} i & \text{if } p = \lambda_i, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$Q_{\lambda\setminus\{p\}}:=egin{cases} Q_{\lambda\setminus\{\lambda_i\}} & \textit{if }p=\lambda_i,\ 0 & \textit{otherwise}. \end{cases}$$

•
$$Q_{(-4,5,4,2)} = (-1)^{4+2+1} 2Q_{(5,2)}$$

•
$$Q_{(-4,5,3,2)} = 0$$

Inner Product and Adjoints

• Define an inner product (\cdot,\cdot) on $\mathbb{C}[z]\otimes\Gamma$ such that the Q_λ form an orthogonal basis,

$$(Q_{\lambda}, Q_{\mu}) = 2^{\ell(\lambda)} \delta_{\lambda\mu}$$

ullet For partitions λ,μ , define the *skew Schur's Q-function Q_{\lambda/\mu}* by

$$\left(Q_{\lambda/\mu},F
ight)=\left(Q_{\lambda},2^{-\ell(\mu)}Q_{\mu}F
ight), \qquad ext{for all } F\in\Gamma$$

- ullet $Q_{\lambda/\mu}$ can be computed with a similar Pfaffian formula
- F^{\perp} denotes the adjoint of multiplication by $F \in \Gamma$,

$$(FG, H) = (G, F^{\perp}H),$$
 for all $G, H \in \Gamma$

Vertex Operator Identity

- A vertex operator is a type of differential operator
- In terms of symmetric functions, the vertex operator is

$$\kappa_z \cdot \kappa_{-1/z}^{\perp}$$

where

$$\kappa_{\mathsf{z}} = \sum_{\mathsf{n} \in \mathbb{Z}} q_{\mathsf{n}} \mathsf{z}^{\mathsf{n}}$$

$$\kappa_{-1/z}^{\perp} = \sum_{n \in \mathbb{Z}} (-1/z)^n q_n^{\perp}$$

Theorem ([GJ24a])

Let λ be a partition, then we have

$$\kappa_{\mathsf{z}} \cdot \kappa_{-1/\mathsf{z}}^{\perp} Q_{\lambda} = \sum_{\mathsf{p} \in \mathbb{Z}} Q_{\mathsf{p}\lambda} \mathsf{z}^{\mathsf{p}},$$

where $p\lambda := (p, \lambda_1, \dots, \lambda_n)$.

$$\kappa_z \cdot \kappa_{-1/z}^{\perp} Q_{\lambda} = \sum_{p \in \mathbb{Z}} Q_{p\lambda} z^p$$

Example

Consider p(5,2,1) where p=-1.

$$Q_{(-1,5,2,1)} = q_{-1}q_0^{\perp}Q_{(5,2,1)} - q_0q_1^{\perp}Q_{(5,2,1)} + q_1q_2^{\perp}Q_{(5,2,1)} - \cdots$$

Note that $q_r^\perp Q_\lambda = Q_{\lambda/(r)}$, so

$$Q_{(-1,5,2,1)} = -2Q_{(5,2,1)/(1)} + 2q_1Q_{(5,2,1)/(2)} - \cdots$$

Since $Q_{(-1,5,2,1)} = -2Q_{(5,2)}$ we have

$$Q_{(5,2)} = Q_{(5,2,1)/(1)} - q_1 Q_{(5,2,1)/(2)} + q_2 Q_{(5,2,1)/(3)} - \cdots$$

Plethysm

- *Plethysm* is a type of composition, F(G) or $F \circ G$
- Power sum basis works well: $p_m(p_n) = p_{mn} = p_n(p_m)$

Proof.

Recall that $p_n(A) = a_1^n + a_2^n + a_3^n + \cdots$. To compute $p_m(p_n)$, replace each variable of $p_n(A)$ with its mth power:

$$p_{m}(p_{n}) = (a_{1}^{m})^{n} + (a_{2}^{m})^{n} + (a_{3}^{m})^{n} + \cdots$$

$$= a_{1}^{mn} + a_{2}^{mn} + a_{3}^{mn} + \cdots$$

$$= p_{mn}(A)$$

- Compute $p_m(G)$ by replacing every variable in G by its mth power
- $p_1(G) = G(A) = G(p_1)$, so $p_1 = a_1 + a_2 + a_3 + \cdots$ is the unit
- $G(a_1 + a_2 + \cdots) = G(A)$, so identify $A = a_1 + a_2 + a_3 + \cdots$

Plethysm in Γ

Some properties in Γ :

- $q_n(z) = 2(z)^n \quad (n \ge 1)$
- $Q_{\lambda}(A+B) = \sum_{\mu} Q_{\lambda/\mu}(A)Q_{\mu}(B)$
- $Q_{\lambda}(zA) = z^{|\lambda|}Q_{\lambda}(A)$
- $F(A+z) = \kappa_z^{\perp} F(A)$ for all $F \in \Gamma$

Sequences of plethysm:

• It's natural to consider sequences of plethysm arising from representation theory:

$$(Q_{\lambda} \circ Q_{p\mu}, Q_{s\nu})$$
 for $p \in \mathbb{Z}$ $(s = |\lambda|(|\mu| + p) - |\nu|)$

Plethysm Stability

Theorem ([GJ24b])

Let λ, μ, ν be partitions, then the sequences

$$egin{aligned} (Q_{\lambda} \circ Q_{p\mu}, Q_{s
u}) & (p \in \mathbb{Z}, s = |\lambda|(|\mu|+p)-|
u|), \ (Q_{p\lambda} \circ Q_{\mu}, Q_{s
u}) & (p \in \mathbb{Z}, s = (|\lambda|+p)|\mu|-|
u|) \end{aligned}$$

stabilize.

As a power series, the first sequence says

$$\sum_{s\in\mathbb{Z}}\left(\sum_{p\in\mathbb{Z}}Q_{\lambda}\circ Q_{p\mu},Q_{s
u}
ight)z^{s}=\mathit{L}(z)+rac{\mathit{cz}^{h}}{1-z^{|\lambda|}},$$

where $h \in \mathbb{Z}$, and L is a Laurent polynomial.

• Idea:
$$\sum_{s \in \mathbb{Z}} Q_{s\nu} z^s = \kappa_z \kappa_{-1/z}^{\perp} Q_{\nu}$$

A Generalization - Hall-Littlewood Functions

• The Hall-Littlewood functions $Q_{\lambda}(A;t)$ interpolate between Schur functions and Schur's Q-functions

$$Q_{\lambda}(A;-1)=Q_{\lambda}(A), \qquad Q_{\lambda}(A,0)=S_{\lambda}(A)$$

Open problems

- Find an algebraic formula for $Q_{\lambda/\mu}(A,t)$
- Prove the vertex operator identity for Hall-Littlewood functions

$$\alpha_z \beta_{-1/z}^{\perp} Q_{\lambda}(A;t) = \sum_{p \in \mathbb{Z}} Q_{p\lambda}(A;t) z^p$$

Do Hall-Littlewood functions have plethysm stability?

References

