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We introduce a Pfaffian formula that extends Schur’s Q
functions Qλ to be indexed by compositions λ with negative 
parts. This formula makes the Pfaffian construction more 
consistent with other constructions, such as the Young tableau 
and Vertex Operator constructions. With this construction, 
we develop a proof technique involving decomposing Qλ into 
sums indexed by partitions with removed parts. Consequently, 
we are able to prove several identities of Schur’s Q-functions 
using only simple algebraic methods.
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1. Introduction

Schur’s Q-functions were introduced in 1911 by Schur [14] to study projective char
acters of the symmetric and alternating groups. Independent Schur’s Q-functions Qλ

are indexed by strict partitions λ, and it is customary to extend the definition of Qλ

to compositions using the anti-symmetry property Q(r,s) = −Q(s,r), for r > s ≥ 0. 
Consequently, for any partition λ, the function Qλ can be dfined as the Pfaffian of 
the skew-symmetric matrix (Q(λi,λj)), which can be viewed as a spin analog of the 
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Jacobi-Trubi formula for the Schur functions [10]. In 1990 and 1991, Nimmo [11] and 
Józfiak and Pragacz [8] introduced a Pfaffian formula for skew Schur’s Q-functions. 
Other constructions of Schur’s Q-functions involve Young tableau [10, p. 229], shifted 
Young tableaux [15], vertex operators [6], and generating functions [10, p. 253].

However, the above anti-symmetry property does not hold for negative integers r, s <
0, so the matrix is not skew-symmetric if we allow λ to have negative parts. In fact, one 
must also dfine Q(0,0) to be 0 for this matrix to be skew-symmetric, even when only 
considering positive parts (see [13, Theorem 4.1]). This convention is not consistent with 
the definition that q0 = 1, and the combinatorial fact that λ and λ0 = (λ1, . . . , λn, 0)
have the same Young diagram. So, instead we should have Q(0,0) = q0 = 1, as is the case 
in other constructions of Schur’s Q-functions. One may reconcile this by simply defining 
the diagonal of the matrix to be all 0s (see [5]).

In this paper, we resolve these issues by defining Qλ with a slightly different matrix 
that is always skew-symmetric, even when λ has negative parts. Schur’s Q-functions 
Q(r,s) with two, possibly negative, parts have been considered before [12], and we extend 
this definition to a composition λ of any length. As a result, we are able to algebraically 
prove many results regarding Schur’s Q-functions. In particular, we show that if λ is 
a composition containing negative parts −p1, . . . ,−pk, then Qλ is, up to a coefficient, 
equal to the function Qμ, where μ is the composition obtained from λ by removing the 
parts ±p1, . . . ,±pk.

Furthermore, we develop a useful technique of decomposing Schur’s Q-functions into 
sums involving the functions Qλ\{λi}, where λ\{λi} is the partition obtained by remov
ing the ith part of λ. Using this technique, we are able to algebraically prove fundamental 
identities such as Qλ0 = Qλ and Qλ/0 = Qλ. These identities are not true in the tradi
tional Pfaffian formulation where we require Q(0,0) to be 0, but they are simple identities 
in other constructions. Crucially, we are now able to use these important identities with 
Pfaffian calculations.

Our main theorem is a Pfaffian formulation of a vertex operator identity, which we 
prove using simple algebraic methods. As a consequence, we are able to decompose Qλ

into different sums of skew functions. We are also able to find a connection between the 
functions Qλ\{λk} and the An root system. Finally, we use our techniques to prove some 
additional identities of Schur’s Q-functions.

2. Preliminaries

A general reference for symmetric functions and Schur’s Q-functions is [10]. A refer
ence for the standard Pfaffian formulas for Schur’s Q-functions is [8].

2.1. Compositions and partitions

A composition λ = (λ1, . . . , λn) ∈ Zn is a finite sequence of integers λi, called its 
parts. A partition is a weakly decreasing composition with nonnegative parts. For any 
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composition λ, its weight |λ| is the sum of its parts, and its length �(λ) is the number 
of nonzero parts. We say a composition is strict if each nonzero part is distinct. We will 
denote the set of partitions (resp. strict partitions) by P (resp. SP). For any integer 
p ∈ Z, we dfine

pλ := (p, λ1, . . . , λn).

Additionally, we can append a 0 as a final part,

λ0 := (λ1, . . . , λn, 0).

For any i ∈ {1, 2, . . . , n}, we dfine

λ \ {λi} := (λ1, . . . , λi−1, λi+1, . . . , λn).

We may similarly remove multiple parts, λ \ {λi, λj}. Note that this notation specfies 
the index of the part being removed from λ. For example, if λ = (5, 3, 3, 1) then we would 
write λ \ {λ2} = (5, 3, 1), but not (5, 3, 3, 1) \ {3}. Additionally, if we remove all of the 
parts, then we are left with the 0 composition.

Finally, for strict compositions λ ∈ Zn and any nonzero integer p ∈ Z, we dfine the 
index of p in λ to be

ind(λ, p) :=
{
i if p = λi for some i,

0 otherwise.

2.2. Pfaffians

Recall that a matrix M is skew-symmetric if M t = −M . The determinant of a skew
symmetric matrix M is of the form detM = (Pf M)2, where Pf M denotes the Pfaffian
of M . If M is a (2n + 1) × (2n + 1) skew-symmetric matrix, then Pf M = 0. Otherwise, 
if M = (mij)1≤i,j≤2n is a skew-symmetric matrix, we have the following Laplace-like 
expansion [1]: Fix some i ∈ {1, 2, . . . , 2n}, then

Pf M = (−1)i−1
∑

1≤j≤2n
j �=i

(−1)jm∗
ij Pf Mij ,

where

m∗
ij :=

{
mij if i < j,

mji if i > j,

and Mij is the submatrix obtained from M by deleting the ith, jth rows and the ith, 
jth columns.
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2.3. Schur’s Q-functions

Now, we may dfine Schur’s Q-functions in the variables x1, x2, . . .. We will omit the 
variables and write qn, Qλ, etc., in place of qn(x1, x2, . . .), Qλ(x1, x2, . . . , ), etc. The 
functions qn are dfined by the generating series

κz :=
∞ ∏
i=1

1 + zxi

1 − zxi
=

∑
n∈Z

qnz
n.

Note that we have q0 = 1, and qn = 0 for n < 0. For any integers r, s ∈ Z, we dfine

Q(r,s) := qrqs + 2
s ∑

i=1 
(−1)iqr+iqs−i, (2.1)

where the sum is empty when s < 1. In particular, we have Q(r,0) = qr for all r ∈ Z.
This formula is the standard definition of Schur’s Q-function for a partition (r, s) with 

two parts, except we allow r and s to be negative integers. So, we have the antisymmetry 
property Q(r,s) = −Q(s,r) for all r, s ∈ Z except when s = −r. In particular, for r, s > 0
we have

Q(±r,−s) = 0,

Q(−r,s) = 0 (r �= s),

Q(−r,r) = (−1)r2,

Q(0,0) = 1.

(2.2)

Note that our convention is consistent with the vertex operator construction that 
Q(−r,r) = (−1)r2 and Q(r,−r) = 0 for r > 0. We dfine Schur’s Q-function for any 
composition λ ∈ Zn to be

Qλ :=
{

Pf M(λ) if n is even,
Pf M(λ0) if n is odd,

where the ij-entry of the n×n matrix M(λ) (or an (n+ 1)× (n+ 1) matrix if n is odd) 
is

M(λ)ij :=

⎧⎪⎪⎨
⎪⎪⎩
Q(λi,λj) if i > j,

0 if i = j,

−Q(λj ,λi) if i < j.

Next, we dfine the skew Schur’s Q-function for a composition λ ∈ Zn and a strict 
partition μ ∈ Zm to be
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Qλ/μ :=
{

Pf M(λ, μ) if n + m is even,
Pf M(λ0, μ) if n + m is odd,

where M(λ, μ) denotes the matrix

M(λ, μ) :=
(

M(λ) N(λ, μ)
−N(λ, μ)t 0

)
,

and where N(λ, μ) is the n×m matrix

N(λ, μ) :=

⎛
⎝ qλ1−μm

· · · qλ1−μ1
...

...
qλn−μm

· · · qλn−μ1

⎞
⎠ .

Let Γ := Z[q1, q2, . . .] be the subring of symmetric functions generated by the qi over 
integers. Clearly Qλ ∈ Γ, and we will show that Qλ, λ ∈ SP, form a spanning set of Γ.

3. Fundamental properties of Qλ

When Γ is considered as a Z-module, the functions Qν form a basis of Γ, for strict 
partitions ν [10]. Hence, it is desirable to express Qλ in this basis for any composition 
λ. However, in this section we will show that it can be convenient to express Schur’s Q
functions with the form Qpλ, where p ∈ Z is any integer, and λ is a strict partition. We 
will also discuss some basic properties of the Pfaffian realization of Schur’s Q-functions 
that are necessary to construct more complicated identities.

3.1. Accounting for the disparity of �(λ)

Due to the Pfaffian definition of Qλ, we need to treat λ differently depending on the 
parity of its length �(λ). Indeed, many subsequent identities will have different formulas 
depending on the length of λ. The following proposition provides an explanation for 
these differences.

Proposition 3.1. Let λ ∈ Zn be a composition, then

−
n ∑

i=1 
(−1)iqλi

Qλ\{λi} =
{
Qλ if n is odd,
0 if n is even.

Proof. If n is odd, then we have

Qλ = Pf

⎛
⎜⎜⎜⎜⎝

Q(λ1,0)
...

Q(λn,0)

−Q(λ1,0) · · · −Q(λn,0) 0

M(λ)
⎞
⎟⎟⎟⎟⎠
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= (−1)n+1−1
�(λ) ∑
j=1 

(−1)jqλj
Pf M(λ \ {λj})

by expanding along the last row/column, and since Q(λj ,0) = qλj
. Then, note that 

Pf(M(λ \ {λj})) = Qλ\{λj}.
If n is even, then we have that Qλ\{λi} = Pf M((λ \ {λi})0), and so Qλ\{λi} is the 

Pfaffian of the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q(λ1,0)
...

Q(λi−1,0)
Q(λi+1,0)

...
Q(λn,0)

−Q(λ1,0) · · · −Q(λi−1,0) −Q(λi+1,0) · · · −Q(λn,0) 0

M(λ \ {λi})

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Expanding on the last row/column, we see that we have

Qλ\{λi} = (−1)n−1

⎛
⎝i−1 ∑

j=1 
(−1)jqλj

Qλ\{λi,λj} −
n ∑

j=i+1
(−1)jqλj

Qλ\{λi,λj}

⎞
⎠

=
∑

1≤j≤n
j �=i

sgn(i, j)(−1)jqλj
Qλ\{λi,λj}

where sgn(i, j) =
{
−1 if j < i,

1 if j > i.

Now, we substitute this formula for Qλ\{λi} into the sum to get

n ∑
i=1 

(−1)iqλi
Qλ\{λi} =

n ∑
i=1 

(−1)iqλi

∑
1≤j≤n
j �=i

sgn(i, j)(−1)jqλj
Qλ\{λi,λj}

=
n ∑

i=1 

∑
1≤j≤n
j �=i

(−1)i+j sgn(i, j)qλi
qλj

Qλ\{λi,λj}.

Finally, note that Qλ\{λi,λj} = Qλ\{λj ,λi}, so we can rewrite this sum to get

∑
1≤i<j≤n

(−1)i+j
(

sgn(i, j)qλi
qλj

+ sgn(j, i)qλj
qλi

)
Qλ\{λi,λj}

=
∑

1≤i<j≤n

(−1)i+j
(
qλi

qλj
− qλj

qλi

)
Qλ\{λi,λj}
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= 0. �
As a consequence of this identity, we are able to prove the following fundamental 

property of Schur’s Q-functions.

Proposition 3.2. Let λ ∈ Zn be a composition, then Qλ0 = Qλ.

Proof. If n is odd, then this statement is simply the definition of Qλ. If n is even, then 
by definition we have Qλ0 = Pf M(λ00), and so

Qλ0 = Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

Q(λ1,0) Q(λ1,0)
...

...
Q(λn,0) Q(λn,0)

−Q(λ1,0) · · · −Q(λn,0) 0 Q(0,0)
−Q(λ1,0) · · · −Q(λn,0) −Q(0,0) 0

M(λ)
⎞
⎟⎟⎟⎟⎟⎟⎠

= Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

qλ1 qλ1
...

...
qλn

qλn

−qλ1 · · · −qλn
0 1

−qλ1 · · · −qλn
−1 0

M(λ)
⎞
⎟⎟⎟⎟⎟⎟⎠
.

By expanding along the last row/column, we have

Qλ0 = (−1)n+2−1
n ∑

i=1 
(−1)iqλi

Pf(M(λ \ {λi}0))

+ (−1)n+2−1(−1)n+11 Pf(M(λ))

= −
n ∑

i=1 
(−1)iqλi

Qλ\{λi} + Qλ

By Proposition 3.1 the sum is 0 when n is even, and hence we are left with Qλ0 = Qλ. �
In other words, we may append an arbitrarily-long, finite sequence of 0s to λ without 

changing Qλ. This is consistent with other constructions, whereas the traditional Pfaffian 
definition of Schur’s Q-functions implies that doing so gives 0. In particular, the typical 
Pfaffian construction dfines Q(0,0) to be 0, which is not consistent with the convention 
that q0 = 1, whereas here we use (2.1) to dfine Q(0,0) = 1 more naturally. We remark 
that Proposition 3.2 implicitly implies that q0 = 1.

However, it is worth noting that our Pfaffian definitions are otherwise equivalent to 
the typical Pfaffian definitions of Qλ and Qλ/μ. Note that qλi−0 = Q(λi,0) and that 
q0−μi

= 0, so we also have Qλ/μ = Pf M(λ, μ0) when n+m is odd (also see [4, Theorem 
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1.6] and [13]). Therefore, if we only consider strict partitions λ and μ and we set Q(0,0)
to be 0, then we get the same formulas for Qλ and Qλ/μ as in [8].

As a result of Proposition 3.2, for compositions λ ∈ Zn we may sometimes assume n
is even or odd, as convenient (in general, the length �(λ) may have different parity since 
�(λ) ≤ n). We identify compositions that differ by any finite number of trailing 0s for 
the purpose of computing Qλ. It is clear that we may also append arbitrarily many zeros 
to λ when computing Qλ/μ, although we may not always append zeros to μ.

Next, we have another fundamental identity that is not true in the traditional Pfaffian 
construction.

Corollary 3.3. Let λ ∈ Zn be a composition, then Qλ/0 = Qλ.

Proof. This is immediate since we see that M(λ, 0) = M(λ0) if n is odd, and M(λ0, 0) =
M(λ00) if n is even. �
3.2. Reordering the parts of λ

For any composition λ ∈ Zn and integer i ∈ {1, 2, . . . , n − 1}, let Bi act on λ by 
swapping parts λi and λi+1,

Biλ := (λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λn).

Proposition 3.4. Let λ ∈ Zn be a composition, then

QBiλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qλ if λi = λi+1,

−Qλ if λi + λi+1 �= 0,
(−1)λi2Qλ\{λi,λi+1} if λi + λi+1 = 0 and λi > 0,
0 if λi + λi+1 = 0 and λi < 0.

Proof. In the first case, we see that λ is invariant under Bi if λi = λi+1. Next, note that 
swapping λi and λi+1 corresponds to interchanging row i with row i + 1, and column i
with column i + 1, of the matrix M(λ) only when λi + λi+1 �= 0 due to (2.2). In this 
case, doing so changes the sign of the Pfaffian.

By Proposition 3.2, we may assume n is even. So, suppose λi + λi+1 = 0 and λi > 0. 
Then we have λi+1 = −λi < 0, and so we see that Qλ is the Pfaffian of the matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q(λ1,λi) 0
...

...
Q(λi−1,λi) 0

−Q(λ1,λi) · · · −Q(λi−1,λi) 0 0 Q(λi,λi+2) · · · Q(λi,λn)
0 · · · 0 0 0 0 · · · 0

−Q(λi,λi+2) 0
...

...
−Q(λi,λn) 0

M1 M2

M3 M4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where (
M1 M2
M3 M4

)
= M(λ \ {λi, λi+1}).

Thus, we see that Qλ = 0. However, we also see that QBiλ is the Pfaffian of the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Q(λ1,λi)
...

...
0 Q(λi−1,λi)

0 · · · 0 0 (−1)λi2 0 · · · 0
−Q(λ1,λi) · · · −Q(λi−1,λi) −(−1)λi2 0 Q(λi,λi+2) · · · Q(λi,λn)

0 −Q(λi,λi+2)
...

...
0 −Q(λi,λn)

M1 M2

M3 M4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, if we expand along the ith row/column, we get

QBiλ = (−1)i−1(−1)i+1(−1)λi2 Pf(M(λ \ {λi, λi+1}))
= (−1)λi2Qλ\{λi,λi+1}.

Hence, we have proven the third case, and the fourth case follows from this argument 
since B2

i λ = λ. �
Therefore, we see that for any composition λ ∈ Zn, we may reorder the parts to be 

weakly decreasing except possibly with negative parts first, and doing so will only change 
Qλ by a nonzero coefficient.

3.3. Removing negative parts

Now, note that if a composition λ has a repeated nonzero part, then M(λ) has two 
identical rows/columns, and hence Qλ = 0. So, we will consider functions of the form 
Qpλ, where λ ∈ Zn is a strict partition and p ∈ Z is a (possibly negative) integer. In 
order to write a formula for Q(−p)λ (p > 0), we first dfine, for any strict composition 
λ ∈ Zn and any nonzero integer p ∈ Z,

Qλ\{p} :=
{
Qλ\{λi} if p = λi,

0 otherwise.

In particular, we have Q(p)\{p} = Q0 = 1. It is convenient to think of λ \ {p} as a 
set difference only when p = λi for some i. Note that the notation Qλ\{λi} specfies the 
index of the part being remove (and so in that case λ need not be strict), whereas Qλ\{p}
specfies the value of the part being removed (hence the requirement that λ is strict).

Proposition 3.5. Let p ∈ Z, p > 0, be a positive integer and let λ ∈ Zn be a strict 
partition, then
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Q(−p)λ = (−1)p+ind(λ,p)+12Qλ\{p}.

Proof. We may assume n is odd, so then we have

Q(−p)λ = Pf

⎛
⎜⎜⎜⎜⎝

0 Q(p,λ1) · · · Q(p,λn)

−Q(p,λ1)
...

−Q(p,λn)

M(λ)

⎞
⎟⎟⎟⎟⎠.

If p �= λj for all j, then by (2.2) we see that the first row/column is all zeros. Therefore 
the Pfaffian is 0, and so the identity holds since by definition we have Qλ\{p} = 0. 
Otherwise, suppose p = λj for some j. Then by (2.2), we have

Q(−p)λ = Pf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 (−1)p2 0 · · · 0
0
...
0

−(−1)p2
0
...
0

M(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the nonzero entry of the first row appears in the (j+1)th column. So, if we expand 
along the first row/column, we get

Q(−p)λ = (−1)j+1(−1)p2 Pf(M(λ \ {λj})
= (−1)p+j+12Qλ\{λj}. �

If λ is a strict composition with multiple negative parts, then we may repeat this 
argument to get a formula for Qλ. Consequently, we have shown that the set of functions 
Qλ for strict partitions λ ∈ SP is a spanning set of Γ.

4. Vertex operator identity

The purpose of this section is to use the Pfaffian formulation of Schur’s Q-functions to 
prove a particular vertex operator identity [6]. First, we must introduce some additional 
definitions and notation.

4.1. Inner products and adjoints

We dfine an inner product (·, ·) on Γ by requiring that the Qλ form an orthogonal 
basis. Thus, we set
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(Qλ, Qμ) = 2�(λ)δλμ

for strict partitions λ and μ. Let z be an indeterminate; in this section we will work over 
the ring C[z] ⊗ Γ of Schur’s Q-functions with coefficients in C[z]. We extend the inner 
product to C[z] ⊗ Γ by C[z]-linearity.

For any F ∈ Γ, we let F⊥ denote the adjoint of multiplication by F with respect to 
(·, ·),

(FQλ, Qμ) = (Qλ, F
⊥Qμ).

If F =
∑

n Fnz
n is an ifinite series, we denote F⊥ :=

∑
n z

nF⊥
n .

Proposition 4.1. For all partitions λ and μ, we have

Q⊥
μQλ = 2�(μ)Qλ/μ.

Proof. Recall [8] that for any F ∈ Γ we have

(
Qλ/μ, F

)
=

(
Qλ, 2−�(μ)QμF

)
,

which is a fundamental identity of the skew functions Qλ/μ. Using linearity and the 
definition of adjoint on the RHS, we get(

Qλ, 2−�(μ)QμF
)

=
(
2−�(μ)Q⊥

μQλ, F
)
.

Together, we have

Qλ/μ = 2−�(μ)Q⊥
μQλ. �

In particular, we will make use of the following case where �(μ) ≤ 1.

Corollary 4.2. For any partition λ, we have

q⊥r Qλ = 2Qλ/(r) (r ≥ 1),

q⊥0 Qλ = Qλ.

4.2. The main identity

The following identity has been proven by Jing using the language of vertex operators 
for both Schur’s Q-functions Qλ(x1, x2, . . .) [6] and the more general Hall-Littlewood 
functions Qλ(x1, x2, . . . ; t) [7]. We note that Hall-Littlewood functions specialize to 
Schur’s Q-functions when t = −1 and to Schur functions when t = 0. The analogous 
identity for Schur functions was proven by Carre and Thibon [2] using a determinantal 
approach with the Jacobi-Trudi identity.
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Theorem 4.3. Let λ be a partition, then we have

∑
p∈Z

Qpλz
p = κz · κ⊥

−1/zQλ.

Our first step is to expand κz · κ⊥
−1/zQλ as a sum.

Lemma 4.4. Let λ be a partition, then we have

κz · κ⊥
−1/zQλ =

∑
p∈Z

zp

⎛
⎝qpQλ + 2

∑
r≥1 

(−1)rqp+rQλ/(r)

⎞
⎠ .

Proof. First, we multiply κz and κ⊥
−1/z to get

κz · κ⊥
−1/zQλ =

∑
i≥0 

qiz
i ·

∑
j≥0 

(−z)−jq⊥j Qλ

=
∑
i≥0 

∑
j≥0 

qiz
i(−z)−jq⊥j Qλ

=
∑
p∈Z

∑
r≥0 

qp+rz
p+r(−z)−rq⊥r Qλ

since qp+r = 0 for p + r < 0. Then, we rewrite this to get

∑
p∈Z

zp
∑
r≥0 

(−1)rqp+rq
⊥
r Qλ.

Finally, we apply Corollary 4.2 to q⊥r Qλ in the sum to get

∑
p∈Z

zp

⎛
⎝qp+0q

⊥
0 Qλ +

∑
r≥1 

(−1)rqp+rq
⊥
r Qλ

⎞
⎠

=
∑
p∈Z

zp

⎛
⎝qpQλ + 2

∑
r≥1 

(−1)rqp+rQλ/(r)

⎞
⎠ �

So, to prove Theorem 4.3, it suffices to show that

Qpλ = qpQλ + 2
∑
r≥1 

(−1)rqp+rQλ/(r).

We need several more identities to finish the proof. First, we will need to write both 
Qpλ and Qλ/(r) as sums of Schur’s Q-functions of the form Qλ\{λi}.
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Lemma 4.5. Let λ ∈ Zn be a partition, then for all integers p ∈ Z we have

Qpλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
n ∑

i=1 
(−1)iQ(p,λi)Qλ\{λi} if n is odd,

qpQλ −
n ∑

i=1 
(−1)iQ(p,λi)Qλ\{λi} if n is even.

Proof. If n is odd, then n + 1 is even, so we have

Qpλ = Pf

⎛
⎜⎜⎜⎜⎝

0 Q(p,λ1) · · · Q(p,λn)

−Q(p,λ1)
...

−Q(p,λn)

M(λ)

⎞
⎟⎟⎟⎟⎠

=
n ∑

j=1 
(−1)j+1Q(p,λj) Pf(M(λ \ {λj}))

by taking the Laplace expansion along the first row/column. Then, note that Pf(M(λ \
{λj})) = Qλ\{λj}.

If n = is even, then we have

Qpλ = Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Q(p,λ1) · · · Q(p,λn) Q(p,0)

−Q(p,λ1)
...

−Q(p,λn)
−Q(p,0)

M(λ0)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
n ∑

j=1 
(−1)j+1Q(p,λj) Pf(M(λ0 \ {λj})) + (−1)n+2Q(p,0) Pf(M(λ0))

by taking the Laplace expansion along the first row/column. Then, note that Pf(M(λ0\
{λj})) = Qλ\{λj}. Additionally, we have that Q(p,0) = qp, and Pf M(λ0) = Qλ. �

The following identity is a special case of an identity by Józfiak and Pragacz [8].

Lemma 4.6 (Józefiak-Pragacz). Let λ ∈ Zn be a partition, then for all positive integers 
r ∈ Z+ we have

Qλ/(r) = −
n ∑

i=1 
(−1)iqλi−rQλ\{λi}.
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Proof. If n is odd, then we have

Qλ/(r) = Pf

⎛
⎜⎜⎜⎜⎝

qλ1−r

...
qλn−r

−qλ1−r · · · −qλn−r 0

M(λ)
⎞
⎟⎟⎟⎟⎠

= (−1)n+1−1
n ∑

j=1 
(−1)jqλj−r Pf(M(λ \ {λj}))

by taking the Laplace expansion along the last row/column. Then, note that Pf(M(λ \
{λj})) = Qλ\{λj}.

If n is even, then we have

Qλ/(r) = Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

qλ1−r

...
qλn−r

q0−r

−qλ1−r · · · −qλn−r −q0−r 0

M(λ0)
⎞
⎟⎟⎟⎟⎟⎟⎠

= (−1)n+2−1
n ∑

j=1 
(−1)jqλj−r Pf(M(λ0 \ {λj}))

by taking the Laplace expansion along the last row/column, since q−r = 0. Then, note 
that Pf(M(λ0 \ {λj})) = Qλ\{λj}. �

Note that our equation in Lemma 4.5 for Qpλ is missing the term qpQλ when �(λ) is 
odd. However, this is accounted for due to Proposition 3.1. So, we are able to prove the 
following identity, which completes the proof of Theorem 4.3.

Theorem 4.7. Let λ ∈ Zn be a partition, then for all p ∈ Z we have

Qpλ = qpQλ + 2
∑
r≥1 

(−1)rqp+rQλ/(r).

Proof. First, suppose n is odd. Then, we substitute the formula (2.1) for Q(r,s) into 
Lemma 4.5 to get

Qpλ = −
�(λ) ∑
i=1 

(−1)iQ(p,λi)Qλ\{λi}

= −
�(λ) ∑
i=1 

(−1)i
⎛
⎝qpqλi

+ 2
∑
r≥1 

(−1)rqp+rqλi−r

⎞
⎠Qλ\{λi}.
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We expand out this sum to get that this is equal to

−qp

�(λ) ∑
i=1 

(−1)iqλi
Qλ\{λi} − 2

�(λ) ∑
i=1 

(−1)i
∑
r≥1 

(−1)rqp+rqλi−rQλ\{λi}.

By Lemma 3.1, we see that the sum in the first term is −Qλ, so we have

qpQλ − 2
�(λ) ∑
i=1 

(−1)i
∑
r≥1 

(−1)rqp+rqλi−rQλ\{λi}.

Then, we rewrite the nested sums to get

qpQλ + 2
∑
r≥1 

(−1)rqp+r

⎛
⎝−

�(λ) ∑
i=1 

(−1)iqλi−rQλ\{λi}

⎞
⎠ .

Finally, we can apply Lemma 4.6 to the sum inside the parentheses, and so we have

Qpλ = qpQλ + 2
∑
r≥1 

(−1)rqp+rQλ/(r).

Next, suppose n is even. We repeat the first steps of the odd case to get

Qpλ = qpQλ − qp

�(λ) ∑
i=1 

(−1)iqλi
Qλ\{λi} − 2

�(λ) ∑
i=1 

(−1)i
∑
r≥1 

(−1)rqp+rqλi−rQλ\{λi},

where there is now an extra term qpQλ. However, by Lemma 3.1 we have that the first 
sum is 0, and so we get

qpQλ − 2
�(λ) ∑
i=1 

(−1)i
∑
r≥1 

(−1)rqp+rqλi−rQλ\{λi},

which is the same as in the odd case. So, we repeat the final steps as the odd case to 
finish the proof. �
Remark 4.8. We could have used Proposition 3.2 to simplify several statements and 
proofs in this section without having to break into even and odd cases. However, we 
would have less information about the differences due to the parity of �(λ).

5. Expanding Qλ using skew functions

In this section, we will expand Qλ as a sum involving skew Schur’s Q-functions of the 
form Qλ/(i) in two different ways. In the first method, i will range over all nonnegative 
integers r ≥ 0. In the second method, i will range over just the parts λ1, λ2, . . . of λ.
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5.1. Sum of Qλ/(r)

Many of our identities have involved the function Qpλ. However, we may easily find 
identities for Qλ by setting p = 0. First, we specialize the final result from last section.

Corollary 5.1. Let λ be a partition, then

Qλ =

⎧⎪⎪⎨
⎪⎪⎩
−
∑
r≥1 

(−1)rqrQλ/(r) if �(λ) is odd,
∑
r≥0 

(−1)rqrQλ/(r) if �(λ) is even.

Proof. Let p = 0 in Theorem 4.7, then we have

Q0λ = Qλ + 2
∑
r≥1 

(−1)rqrQλ/(r).

Repeatedly applying Proposition 3.4 to Q0λ, we see that we get

(−1)�(λ)Qλ0 = Qλ + 2
∑
r≥1 

(−1)rqrQλ/(r).

Then, since Qλ0 = Qλ we have

−
∑
r≥1 

(−1)rqrQλ/(r) =
{
Qλ if �(λ) is odd,
0 if �(λ) is even.

Subtracting q0Qλ/(0) = Qλ from these equations, we get

∑
r≥0 

(−1)rqrQλ/(r) =
{

0 if �(λ) is odd,
Qλ if �(λ) is even. �

5.2. Sum of Qλ/(λk)

Now, we will write a sum ranging over the parts of λ. In order to find this sum, we 
will need to write a similar decomposition of Schur’s Q-functions of the form Qλ\{λk}. 
Then, we may substitute this decomposition into Lemma 4.5 to get our desired sum.

Lemma 5.2. Let λ be a partition and fix an integer k such that 1 ≤ k ≤ �(λ), then

Qλ\{λk} = −
k∑

i=1 
(−1)irλi,kQλ/(λi)
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where rλi,k is a polynomial in the variables q1, q2, . . . , qλi−λk
. Specifically, we have rλi,i = 1, 

and recursively dfine (for k > i)

rλi,k = −
k−1∑
j=i 

(−1)j−kqλj−λk
rλi,j .

Proof. Recall from Lemma 4.6 that we have

Qλ/(r) = −
n ∑

i=1 
(−1)iqλi−rQλ\{λi}.

First, note that if r = λk, then the sum only needs to go from 1 to k since qλi−r = 0 for 
λi < r = λk. Additionally, we have that qλk−λk

= q0 = 1, so we have

−Qλ/(λk) = (−1)kQλ\{λk} +
k−1∑
i=1 

(−1)iqλi−λk
Qλ\{λi}.

Then, we can solve for Qλ\{λk}, and we get

Qλ\{λk} = (−1)1−kQλ/(λk) −
k−1∑
i=1 

(−1)i−kqλi−λk
Qλ\{λi}. (5.1)

Now, we can use this identity to prove the Lemma. We proceed by induction on k. 
First, if k = 1, then from (5.1) we see that

Qλ\{λ1} = (−1)1−1Qλ/(λ1)

= −
(
(−1)1rλ1,1Qλ/(λ1)

)
since rλ1,1 = 1. Suppose the Lemma is true for Qλ\{λk}, then by (5.1) we have

Qλ\{λk+1} = (−1)1−(k+1)Qλ/(λk+1) −
k∑

i=1 
(−1)i−(k+1)qλi−λk+1Qλ\{λi}

= (−1)kQλ/(λk+1) −
k∑

i=1 
(−1)i−(k+1)qλi−λk+1

⎛
⎝−

i ∑
j=1 

(−1)jrλj,iQλ/(λj)

⎞
⎠

since i ≤ k. We can rewrite this sum to get

(−1)kQλ/(λk+1) +
k∑

j=1 
(−1)j

⎛
⎝ k∑

i=j

(−1)i−(k+1)qλi−λk+1r
λ
j,i

⎞
⎠Qλ/(λj),

and so by the definition of rλi,k we have
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− (−1)k+1rλk+1,k+1Qλ/(λk+1) −
k∑

j=1 
(−1)jrλj,k+1Qλ/(λj)

= −
k+1∑
j=1 

(−1)jrλj,k+1Qλ/(λj). �

Now, we can use this to get a decomposition of Qpλ.

Proposition 5.3. Let λ be a partition and p ∈ Z, then

Qpλ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(λ) ∑
k=1

⎛
⎝�(λ) ∑

i=k

(−1)i+kQ(p,λi)r
λ
k,i

⎞
⎠Qλ/(λk) if �(λ) is odd,

qpQλ +
�(λ) ∑
k=1

⎛
⎝�(λ) ∑

i=k

(−1)i+kQ(p,λi)r
λ
k,i

⎞
⎠Qλ/(λk) if �(λ) is even.

Proof. Recall from Lemma 4.5 that we have

Qpλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
n ∑

i=1 
(−1)iQ(p,λi)Qλ\{λi} if n is odd,

qpQλ −
n ∑

i=1 
(−1)iQ(p,λi)Qλ\{λi} if n is even.

From Lemma 5.2 we can replace Qλ\{λi} so that the sum becomes

−
�(λ) ∑
i=1 

(−1)iQ(p,λi)Qλ\{λi} =
�(λ) ∑
i=1 

(−1)iQ(p,λi)

i ∑
j=1 

(−1)jrλj,iQλ/(λj).

Finally, we can swap the sums to get

=
�(λ) ∑
j=1 

⎛
⎝�(λ) ∑

i=j

(−1)i+jQ(p,λi)r
λ
j,i

⎞
⎠Qλ/(λj). �

Like before, we are able to set p = 0 to get an analogous statement about Qλ as a 
sum of skew functions.

Corollary 5.4. Let λ be a partition, then

Qλ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
�(λ) ∑
k=1

(−1)kaλkQλ/(λk) if �(λ) is odd,

�(λ) ∑
k=0

(−1)kaλkQλ/(λk) if �(λ) is even,
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where we set λ0 := 0, and we dfine the coefficients

aλk :=

⎧⎪⎪⎨
⎪⎪⎩
−

�(λ) ∑
i=k

(−1)iqλi
rλk,i 1 ≤ k ≤ �(λ),

1 k = 0,

where rλk,i are dfined as in Lemma 5.2.

Proof. Let p = 0 in Lemma 5.3, then we have

Q0λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(λ) ∑
k=1

⎛
⎝�(λ) ∑

i=k

(−1)i+k(−qλi
)rλk,i

⎞
⎠Qλ/(λk) if �(λ) is odd,

q0Qλ +
�(λ) ∑
k=1

⎛
⎝�(λ) ∑

i=k

(−1)i+k(−qλi
)rλk,i

⎞
⎠Qλ/(λk) if �(λ) is even.

Then, repeatedly apply Proposition 3.4 to get Q0λ = (−1)�(λ)Qλ, and so we have

�(λ) ∑
k=1

⎛
⎝�(λ) ∑

i=k

(−1)i+kqλi
rλk,i

⎞
⎠Qλ/(λk) =

{
Qλ if �(λ) is odd,
0 if �(λ) is even.

Equivalently, this is

−
�(λ) ∑
k=1

(−1)kaλkQλ/(λk) =
{
Qλ if �(λ) is odd,
0 if �(λ) is even.

Subtracting aλ0Qλ/(0) = Qλ, we have

�(λ) ∑
k=0

(−1)kaλkQλ/(λk) =
{

0 if �(λ) is odd,
Qλ if �(λ) is even. �

5.3. Specializing rλi,k and aλk to staircase partitions

As we have seen, it is useful to work with sums of Schur’s Q-functions of the form 
Qλ\{λk}. So, it may be useful to study the decompositions of the functions Qλ\{λk}, and 
in particular the coefficients rλi,k and aλk from Lemma 5.2 and Corollary 5.4. First, we 
find simple formulas for the coefficients in the case where λ is a staircase partition

δ(n) := (n− 1, n− 2, . . . , 2, 1) ∈ Zn−1

for n ≥ 1. To start, we see that rδ(n)
i,k depends only on the difference k − i.
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Lemma 5.5. Fix i ≤ k < n, then for all j such that −i < j < n− k, we have

r
δ(n)
i,k = r

δ(n)
i+j,k+j .

In particular,

r
δ(n)
i,k = r

δ(n)
1,k−i+1.

Proof. This is clear from the definitions of rλi,k and δ(n) since rλi,k depends on the differ
ences between the parts λi, . . . , λk. �

So, it suffices to find a formula for rδ(n)
1,k .

Lemma 5.6. For all k < n, we have

r
δ(n)
1,k = qk−1.

Proof. We proceed by induction on k. First, we see that

r
δ(n)
1,1 = 1 = q0 = q1−1.

Next, we have

r
δ(n)
1,k = −

k−1∑
j=1 

(−1)j−kqk−jr
δ(n)
1,j .

By the induction hypothesis, we have that this is

−
k−1∑
j=1 

(−1)j−kqk−jqj−1.

We can rewrite this sum as

(−1)k
(( ∑

r+s=k−1

(−1)rqsqr

)
− (−1)k−1q0qk−1

)
.

It is well-known [10, p. 251] that this sum is 0 for k ≥ 2, hence we are left with qk−1. �
Proposition 5.7. For all i ≤ k < n, we have rδ(n)

i,k = qk−i.

Proof. This is an immediate consequence of the previous two Lemmas. �
Now, we can use our formula for rδ(n)

i,k to get a formula for aδ(n)
k .
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Proposition 5.8. 

a
δ(n)
k :=

{
(−1)nqn−k 1 ≤ k ≤ n− 1,
1 k = 0.

Proof. Using Proposition 5.7, for k ≥ 1 we have

a
δ(n)
k = −

n−1∑
i=k

(−1)iqδir
δ(n)
k,i

= −
n−1∑
i=k

(−1)iqn−iqi−k

Next, we write the sum as

(−1)k+1
n−k−1∑
j=0 

(−1)jqjqn−k−j ,

which is equal to

(−1)k+1

(( ∑
r+s=n−k

(−1)rqrqs

)
− (−1)n−kqn−kq0

)
.

Once again the sum is 0, and so we get (−1)nqn−k. �
5.4. The coefficients rλi,k and the An−1 root system

The An−1 root system has positive roots Φ+ := {εi − εj | 1 ≤ i < j ≤ n}, where 
ε1, . . . , εn are linear functionals of the Cartan subalgebra, and here we view them as 
formal symbols. For any i ≤ k, we say that a decomposition of β ∈ Φ+ is a subset 
D ⊆ Φ+ of positive roots that sum to β. Additionally, we say that the only decomposition 
of εi − εi = 0 is the empty set ∅. Otherwise, for i < k it is easy to see that there are 
2k−i−1 decompositions of εi−εk (corresponding to subsets of {i, i+1, . . . , k} that contain 
both i and k). For more details, see the Kostant partition function [3,9].

We may use these definitions to write the coefficients rλi,k as a closed sum for any 
partition λ.

Proposition 5.9. Let λ ∈ Zn be a partition, and suppose 1 ≤ i ≤ k ≤ n. Then we have

rλi,k = (−1)i−k
∑
D

(−1)#DqλD,

where the sum ranges over decompositions D = {β1, . . . , β�} ⊆ Φ+ of εi − εk, #D is the 
cardinality of D, and we dfine
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qλD := qλβ1
· · · qλβ�

(#D ≥ 1),

qλ∅ := 1,

where for βj = εr − εs we have

qλβj
:= qλr−λs

.

Proof. We proceed by induction on the difference k − i ≥ 0. First, when k = i, there is 
nothing to prove. Then, when k = i + 1, we have from Lemma 5.1 that

rλi,i+1 = −(−1)i−(i+1)qλi−λi+1 · 1.

Since {εi − εi+1} is the only subset of Φ+ such that the sum of its elements is λi −λi+1, 
we are done with the base case.

Next, we see that we have

rλi,k = −
k−1∑
j=i 

(−1)j−kqλj−λk
rλi,j

= −
k−1 ∑

j=i+1
(−1)j−kqλj−λk

(
(−1)i−j

∑
D

(−1)#DqλD

)
− (−1)i−kqλi−λk

by the induction hypothesis, where the sum is over decompositions D of εi − εj . After 
rewriting, we get

(−1)i−k

⎛
⎝ k−1 ∑

j=i+1
−qλj−λk

∑
D

(−1)#DqλD − qλi−λk

⎞
⎠ .

Notice that −qλi−λk
= (−1)#{εi−εk}qλ{εi−εk}. Also, for any decomposition D of εi − εj , 

we have that the elements of D ∪ {λj − λk} sum to εi − εk. Therefore, we can combine 
everything into the desired sum, ranging over decompositions of εi − εk. �
6. Further identities

6.1. A skew function identity

The Schur functions Sλ form a basis of the ring Λ of symmetric functions. One identity 
that Schur functions satisfy is Spλ/(p−k) = Skλ (see [2, p. 396]). We may prove a similar 
identity with Schur’s Q-functions.

Proposition 6.1. For all partitions λ ∈ Zn and integers k, p ∈ Z such that k ≥ 0 and 
p > λ1 + k, we have
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Qpλ/(p−k) = qkQλ.

Proof. First, note that we have qλi−(p−k) = 0 for all i since we see that λi − (p − k) ≤
λ1 − (p− k) < 0. Next, we may assume that n is even, so we have

Qpλ/(p−k) = Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

qp−(p−k)
qλ1−(p−k)

...
qλn−(p−k)

−qp−(p−k) −qλ1−(p−k) · · · −qλn−(p−k) 0

M(pλ)
⎞
⎟⎟⎟⎟⎟⎟⎠

= Pf

⎛
⎜⎜⎜⎜⎜⎜⎝

qk
0
...
0

−qk 0 · · · 0 0

M(pλ)

⎞
⎟⎟⎟⎟⎟⎟⎠

= (−1)n+2−1(−1)1qk Pf M(λ)

by expanding along the last row/column. �
6.2. An alternating identity

As we have seen, Schur’s Q-functions satisfy several identities involving alternating 
sums. For example, for any fixed integer n ∈ Z we have the fundamental identity

∑
r+s=n

(−1)rqrqs =
{

0 n �= 0,
1 n = 0,

(see [10, p. 251]). We now provide a similar identity involving Schur’s Q-functions with 
two parts.

Proposition 6.2. Fix integers p, n ∈ Z, then we have

∑
r+s=n

(−1)rqrQ(p,s) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)n2qp+n n > 0,
qp n = 0,
0 n < 0,

and

∑
r+s=n

(−1)rqrQ(s,p) =

⎧⎪⎪⎨
⎪⎪⎩

0 n > 0,
qp n = 0,
(−1)n2qp+n n < 0.
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Proof. First, consider the sum 
∑

r+s=n(−1)rqrQ(p,s). If n < 0 then we have either r < 0
or s < 0 in each term, and so the sum is 0. Similarly, if n = 0, then the only possible 
nonzero term is when r = s = 0, and so we get (−1)0q0Q(p,0) = qp.

So, suppose n > 0, then we use (2.1) to expand Q(p,s) and get

∑
r+s=n

(−1)rqrQ(p,s) =
∑

r+s=n

(−1)rqr

(
qpqs + 2

s ∑
i=1 

(−1)iqp+iqs−i

)

= qp
∑

r+s=n

(−1)rqrqs + 2
∑

r+s=n

(−1)rqr
s ∑

i=1 
(−1)iqp+iqs−i.

Note that first sum is 0 since n > 0. We may reindex the next sums so that we have

2
n−1∑
j=0 

n−j∑
i=1 

(−1)jqj(−1)iqp+iqn−j−i,

where the outer sum only runs to j = n− 1 since qn−j−i = 0 when j = n. By swapping 
the order of the sums, we have

2
n ∑

i=1 

n−i ∑
j=0 

(−1)jqj(−1)iqp+iqn−j−i.

Finally, we can rewrite this to get

2
n ∑

i=1 
(−1)iqp+i

n−i ∑
j=0 

(−1)jqjqn−j−i

= 2
n ∑

i=1 
(−1)iqp+i

∑
u+v=n−i

(−1)uquqv

= 2(−1)nqp+n

since the inner sum is 0 if n− i �= 0, and is 1 if i = n.
Finally, we get the second identity with similar calculations, or by applying Proposi

tion 3.4 to Q(p,s) in the first identity. �
We note that one may prove these identities with generating functions. However, our 

construction allows for a proof with just basic algebra. Importantly, we can see that it 
is useful that equation (2.1) is used as the definition of Q(r,s) for all integers r and s, 
rather than just the case where both are positive.

Data availability

No data was used for the research described in the article.



J. Graf, N. Jing / Journal of Algebra 669 (2025) 1--25 25

References

[1] Yue Cao, Naihuan Jing, Ning Liu, A spin analog of the plethystic Murnaghan-Nakayama rule, Ann. 
Comb. 28 (2024) 655--679.

[2] Christophe Carre, Jean-Yves Thibon, Plethysm and vertex operators, Adv. Appl. Math. 13 (1992) 
390--403.

[3] Brian C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, 2nd 
edition, Springer, 2015.

[4] A.M. Hamel, Pfaffians and determinants for Schur Q-functions, J. Comb. Theory, Ser. A 75 (1995) 
328--340.

[5] Fang Huang, Yanjun Chu, Chuanzhong Li, Littlewood-Richardson rule for generalized Schur Q
functions, Algebr. Represent. Theory 26 (2023) 3143--3165.

[6] Naihuan Jing, Vertex operators, symmetric functions, and the spin group Γn, J. Algebra 138 (1991) 
340--398.

[7] Naihuan Jing, Vertex operators and Hall-Littlewood symmetric functions, Adv. Math. 87 (1991) 
226--248.

[8] Tadeusz Józfiak, Piotr Pragacz, A determinantal formula for skew Q-functions, J. Lond. Math. 
Soc. 43 (1991) 76--90.

[9] Bertram Kostant, A formula for the multiplicity of the weight, Transl. Am. Math. Soc. 93 (1959) 
53--73.

[10] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University, Ox
ford, 1995.

[11] J.J.C. Nimmo, Hall-Littlewood symmetric functions and the BKP equation, J. Phys. A, Math. Gen. 
23 (5) (1990) 751--760.

[12] Yuji Ogawa, Generalized Q-functions and UC-hierarchy of B-type, Tokyo J. Math. 32 (2009) 
349--380.

[13] Soichi Okada, Pfaffian formulas and Schur Q-function identities, Adv. Math. 353 (2019) 446--470.
[14] I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene 

lineare Substitutionen, J. Reine Angew. Math. 139 (1911) 155--250.
[15] John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. 

Math. 74 (1989) 87--134.

http://refhub.elsevier.com/S0021-8693(25)00052-3/bib792CB03A129BB29F485CDEEAB4955237s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib792CB03A129BB29F485CDEEAB4955237s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib0D2CCA8DFA32BEB03710104F812790B3s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib0D2CCA8DFA32BEB03710104F812790B3s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib452D540CF4C9D32D6358FD372A5C8E76s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib452D540CF4C9D32D6358FD372A5C8E76s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibD09DF1A87EE4EC3280D0E931117FC4A1s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibD09DF1A87EE4EC3280D0E931117FC4A1s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibE33429D730C2DB0D041E62300029E2B8s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibE33429D730C2DB0D041E62300029E2B8s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib3A6E0B0B0D2C865D061DB8BE62043E96s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib3A6E0B0B0D2C865D061DB8BE62043E96s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibAE84E210085225E55A74968EA99B6033s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibAE84E210085225E55A74968EA99B6033s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib7E953D9E9705352486FFA45FC2A39A96s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib7E953D9E9705352486FFA45FC2A39A96s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibC1A2ED13D4BA1CAABA18A4D14AC561EAs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibC1A2ED13D4BA1CAABA18A4D14AC561EAs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib75B81F25BEB1C743F1877C50216E6E8Fs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib75B81F25BEB1C743F1877C50216E6E8Fs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib10AC3D0083458284231C81005D452B91s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib10AC3D0083458284231C81005D452B91s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib68D8894493D1A5ED4058779CEC4B3C2Cs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib68D8894493D1A5ED4058779CEC4B3C2Cs1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib9DBB52B4C50CBF2EF87FE873868CA54As1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib358439A048A67C4FEA02EF2CD1B6E6E7s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bib358439A048A67C4FEA02EF2CD1B6E6E7s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibCD598F2BBDEC7C0DA9ADE9F88B311D07s1
http://refhub.elsevier.com/S0021-8693(25)00052-3/bibCD598F2BBDEC7C0DA9ADE9F88B311D07s1

	Pfaffian formulation of Schur’s Q-functions
	1 Introduction
	2 Preliminaries
	2.1 Compositions and partitions
	2.2 Pfaffians
	2.3 Schur’s Q-functions

	3 Fundamental properties of Qλ
	3.1 Accounting for the disparity of l(λ)
	3.2 Reordering the parts of λ
	3.3 Removing negative parts

	4 Vertex operator identity
	4.1 Inner products and adjoints
	4.2 The main identity

	5 Expanding Qλ using skew functions
	5.1 Sum of Qλ/(r)
	5.2 Sum of Qλ/(λk)
	5.3 Specializing rλi,k and aλk to staircase partitions
	5.4 The coefficients rλi,k and the An−1 root system

	6 Further identities
	6.1 A skew function identity
	6.2 An alternating identity

	Data availability
	References


